Qubit teleportation between non-neighboring nodes in a quantum network

Advertisement

  • Kimble, HJ The Quantum Internet. Nature 4531023-1030 (2008).

    ADS-CAS Article Google Scholar

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the future. Science 362team9288 (2018).

    ADS MathSciNet article Google Scholar

  • Bennett, CH et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. physics Rev. Lett. 701895-1899 (1993).

    ADS MathSciNet CAS Article Google Scholar

  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390575-579 (1997).

    ADS-CAS Article Google Scholar

  • Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleportation of an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. physics Rev. Lett. 801121-1125 (1998).

    ADS MathSciNet CAS Article Google Scholar

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282706-709 (1998).

    ADS-CAS Article Google Scholar

  • Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323486-489 (2009).

    ADS-CAS Article Google Scholar

  • Noelleke, C. et al. Efficient teleportation between remote single-atom quantum memories. physics Rev. Lett. 110140403 (2013).

    ADS article Google Scholar

  • Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345532-535 (2014).

    ADS MathSciNet CAS Article Google Scholar

  • Langenfeld, S. et al. Quantum teleportation between remote qubit stores using just a single photon as a resource. physics Rev. Lett. 126130502 (2021).

    ADS-CAS Article Google Scholar

  • Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A. & Smith, A. Secure multiparty quantum computation with (only) a strict honest majority. In Proc. 2006 47th Annual IEEE Symposium on Fundamentals of Computer Science (FOCS’06) 249-258 (IEEE, 2006).

  • Arora, AS, Roland, J. & Weis, S. Quantum weak coin toss. In Proc. 51st Annual ACM Symposium on Theory of Computation (STOC 2019) 205-216 (ACM, 2019).

  • VanMeter, R. quantum networks (Wiley, 2014).

  • Bao, X.-H. et al. Quantum teleportation between remote atomic ensemble quantum memories. Proc. Natl. Acad. Science. 10920347-20351 (2012).

    ADS-CAS Article Google Scholar

  • Briegel, H.-J., Dür, W., Cirac, JI & Zoller, P. Quantum Repeater: The Role of Imperfect Local Operations in Quantum Communication. physics Rev. Lett. 815932-5935 (1998).

    ADS-CAS Article Google Scholar

  • Cabrillo, C., Cirac, JI, García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. physics Rev A 591025-1033 (1999).

    ADS-CAS Article Google Scholar

  • Bose, S., Knight, PL, Plenio, MB & Vedral, V. Proposal for teleportation of an atomic state by cavity decay. physics Rev. Lett. 835158-5161 (1999).

    ADS-CAS Article Google Scholar

  • Pompili, M. et al. Realization of a multi-node quantum network of remote solid-state qubits. Science 372259-264 (2021).

    ADS-CAS Article Google Scholar

  • Humphreys, PC et al. Deterministic deployment of remote entanglement in a quantum network. Nature 558268-273 (2018).

    ADS-CAS Article Google Scholar

  • Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Time-resolved two-photon quantum interference. appl. physics B 77797-802 (2003).

    ADS-CAS Article Google Scholar

  • Bradley, C. et al. A 10-qubit solid-state spin register with quantum storage up to one minute. physics Rev X 9031045 (2019).

    CAS Google Scholar

  • Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit through real-time feedback. nat. commune 711526 (2016).

    ADS-CAS Article Google Scholar

  • Robledo, L. et al. High-precision projective readout of a solid-state spin quantum register. Nature 477574-578 (2011).

    ADS-CAS Article Google Scholar

  • Jiang, L. et al. Repeated readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326267-272 (2009).

    ADS-CAS Article Google Scholar

  • van Enk, SJ, Lütkenhaus, N. & Kimble, HJ Experimental methods for checking entanglement. physics Rev A 75052318 (2007).

    ADS article Google Scholar

  • Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. In Proc. 2009 50th Annual IEEE Symposium on Fundamentals of Computer Science 517-526 (IEEE, 2009).

  • Rose, BC et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 36160-63 (2018).

    ADS-CAS Article Google Scholar

  • Nguyen, C. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. physics Rev. Lett. 123183602 (2019).

    ADS-CAS Article Google Scholar

  • Trusheim, ME et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. physics Rev. Lett. 124023602 (2020).

    ADS-CAS Article Google Scholar

  • Sohn, NT et al. Development of silicon carbide for quantum spintronics. appl. physics Latvian. 116190501 (2020).

    ADS-CAS Article Google Scholar

  • Lukin, DM, Guidry, MA & Vučković, J. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1020102 (2020).

    Article Google Scholar

  • Kindem, JM et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580201-204 (2020).

    ADS-CAS Article Google Scholar

  • Chen, S., Raha, M., Phenicie, CM, Ourari, S. & Thompson, JD Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370592-595 (2020).

    CAS article Google Scholar

  • Ruf, M., Wan, NH, Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamonds. J. Appl. physics 130070901 (2021).

    ADS-CAS Article Google Scholar

  • Grein, ME, Stevens, ML, Hardy, ND & Benjamin Dixon, P. Stabilization of long, deployed optical fiber links for quantum networks. In Proc. 2017 Conference on Lasers and Electro-Optics (CLEO 2017) 1-2 (IEEE, 2017).

  • Dahlberg, A. et al. A link-layer protocol for quantum networks. In Proc. ACM Special Interest Group on Data Communication (SIGCOMM ’19) 159-173, (ACM, 2019).

  • Hensen, B. et al. Seamless violation of Bell’s inequality using electron spins 1.3 kilometers apart. Nature 526682-686 (2015).

    ADS-CAS Article Google Scholar

  • You May Also Like